Wednesday, May 24, 2017

Part 11: 150 Years of Canadian Aerospace History

MDA's Rise, Spar's Fall, STEM Antenna's,  the Space Shuttle, the Canadarm, 

COMDEV & Optech 




          By Robert Godwin
Canada's aerospace raison d'être has always derived from its immense size, its location in the far north as a vast, barely-tracked wilderness of incalculable resources and the logical requirements relating to defence, communications, utilization and exploration which naturally follow from its size and location.

While MacDonald Dettwiler (MDA), Canada's newest aerospace company, was capitalizing on its first paid work, the well-established SPAR Aerospace suddenly came under attack.

The United States government had determined that the STEM antenna had become a strategic asset and so the Congress ordered American companies to reverse-engineer the device.

This decision came just a few years after the Soviet Union had already done the same thing and had deployed STEMs on many of their own satellites. In fact Soviet-built STEMs were sitting on the surface of Mars aboard the first spacecraft to soft-land on the red planet. In response to this existential threat SPAR purchased Astro Research in California, and the production of STEMs moved south of the border.

STEM had been aboard all three of America's manned spacecraft and SPAR's Vice President John Macnaughton was determined to have the company play a role in the next generation too – the Space Shuttle.

Despite the Telesat Canada Act, which was supposed to guarantee that Canadian satellites be built in Canada, the first geosynchronous communications satellite for Canada, the Anik A-1, was built by Hughes Aerospace in California. SPAR and RCA vigorously protested this decision and managed to win back contracts for some of the work. This had the fortunate side-effect of demonstrating to Hughes that the two Canadian companies could perform excellent work which led to many other satellites being built in Canada under contract to Hughes.

However, when the Nixon administration announced that it would be going ahead with the space shuttle program it was the potential to provide NASA with robotics which attracted SPAR to the program.

Then Spar Aerospace chairman Larry Clarke, left, and president John MacNaughton were optimistic about projects such as US Space Station Freedom and its potential for Canadian technology sales when this photo was taken in 1990. Space Station Freedom eventually morphed into the International Space Station (ISS) after funding cutbacks forced the US government to solicit international partners. Photo c/o Virtual Reference Library.

An arm designed to capture incoming spacecraft and bring them in to safely dock with a space station had been discussed at de Havilland for at least a decade. Canada was also leading the world in nuclear reactor design and in handling nuclear fuel rods. This capability would give Canada a head start when it came to robotic manipulators. George Klein had been involved in the first nuclear reactor built in Canada and had gone on to contribute to the world-class CANDU reactor. He had also invented the world's first electric wheelchair and was an expert on gearing.

In 1969 NASA issued a contract to study potential remote manipulator systems for the upcoming manned orbital workshop (later known as Skylab). The report was filed in July of 1970 and it compared the usefulness of extravehicular mobility unit (or EMU, also known as "backpacks") to stand-alone service vehicles (also known as "bottle suits") and gear driven robotic manipulator arms.

One of the candidates put forward was a multiple jointed robotic arm and hand made up of a connected series of STEMs. This system could theoretically reach around the Skylab station and perform useful tasks while being steered by an operator inside the pressurized confines of the Skylab multiple docking adapter module.

Klein's STEM had already been used throughout the 1950s as a way of deploying beacons. Then in the 1960s it had done sterling service as the antenna of choice on dozens of spacecraft. Now it was being considered as the basis of a space manipulator system.

Initially the contract pursued was for the proposed space telescope, but Macnaughton wanted SPAR to also bid on a robotic manipulation system for the shuttle. The simple STEM which had started life as a rapidly deployable antenna for trucks and aircraft was to about to give birth to the most sophisticated robotic tool to ever fly in space.

Skylab would fly in 1973 without a remote manipulator system, an oversight which in hindsight almost caused the entire mission to fail. The first crew had to conduct spacewalks to save America's first space station due to various deployment failures after launch. One of the main solar panels had not extended; an issue which presented STEM with yet another opportunity. STEMs would later be used for solar panel deployment on many spacecraft.


While SPAR investigated the future of space robotics the aircraft industry was still in some chaos. In May of 1974 the Government of Canada purchased de Havilland Canada from Hawker Siddeley for $38.8M. This was the beginning of the government's attempt to further consolidate and manage the Canadian aerospace sector.

Eighteen months later they purchased Canadair from General Dynamics (for $38Mln CDN) which at that time was manufacturing long-range patrol aircraft for Lockheed. A few months later Canadair announced plans to build a civilian jet designed by William Lear of Learjet. None of this consolidation resolved the still outstanding problem of what kind of fighter interceptors were going to patrol Canada's home shores. The Voodoo was now considered to be old technology and a whole new generation of fighters were being concocted in the factories south of the border.

Val O'Donovan. Photo c/o Waterloo Region Museum.
Also in 1974 two Canadians working in Quebec both launched new companies with an eye to continuing Canada's primary leads in communications and atmospheric and resource studies. They were named ComDev and Optech. Both companies came out of the research laboratories at RCA Canada. ComDev became a household name under the leadership of Michael Valentine O'Donovan.

O'Donovan had figured out a new way to multiplex radio transmissions. His device would make satellites more versatile and lighter. In his seminal paper he wrote, "In multi-channel microwave radio relay systems it is sometimes necessary to have a number of transmitters and receivers simultaneously utilizing the same aerial. To achieve this a complex branching system is necessary."

O'Donovan would take this concept and build one of Canada's pre-eminent aerospace companies. Over more than three decades Com Dev's fortunes waxed and waned but their technology remained first class. Like many companies its long history and line of products and patents eventually attracted a foreign takeover.

Optech's Alan Carswell had created an advanced Lidar with help from York University. It was one of the sensor systems which Lapp had recommended to the Canada Centre for Remote Sensing (CCRS) back in 1969.

Optech adapted Lidar technology to create portable, versatile systems which could map and study the ground and atmosphere in ways never before anticipated and made Optech into a world leader in the field.  
Robert Godwin.
_____________________________________________________________

Robert Godwin is the owner and founder of Apogee Space Books, the Space Curator at the Canadian Air & Space Museum and an American Astronautical Society History Committee Member.
He has written or edited over 100 books including the award winning series "The NASA Mission Reports" and appeared on dozens of radio and television programs in Canada, the USA and England as an expert not only on space exploration but also on music.  
His books have been discussed on CNN, the CBC, the BBC and CBS 60 Minutes. He produced the first ever virtual reality panoramas of the Apollo lunar surface photography and the first multi-camera angle movie of the Apollo 11 moonwalk. His latest book was written with the late Frederick I Ordway III and is called "2001 The Heritage and Legacy of the Space Odyssey" about the history of spaceflight at the movies.
Last Week, "The Canada Centre for Remote Sensing, Synthetic Aperture Radar, 
SEASAT, John Macdonald and MDA,'" in part ten of "150 Years of Canadian Aerospace History."

Next Week, "The Cape Perry Spaceport, Gordon Shepherd, Hermes, the Battle for the Canadarm and SeaSat," as part twelve of "150 Years of Canadian Aerospace History" continues.

On sale now, at Apogee Books.

No comments:

Post a Comment

Support our Patreon Page